Not logged in | Create account | Login

    Authorpædia Trademarks

    Social buttons

    Languages

    Read

    AUTHORPÆDIA is hosted by Authorpædia Foundation, Inc. a U.S. non-profit organization.

Stephen Dando-Collins

In linear algebra, an orthogonal diagonalization of a normal matrix (e.g. a symmetric matrix) is a diagonalization by means of an orthogonal change of coordinates.[1]

The following is an orthogonal diagonalization algorithm that diagonalizes a quadratic form q(x) on n by means of an orthogonal change of coordinates X = PY.[2]

Then X = PY is the required orthogonal change of coordinates, and the diagonal entries of will be the eigenvalues which correspond to the columns of P.

References

  1. ^ Poole, D. (2010). Linear Algebra: A Modern Introduction (in Dutch). Cengage Learning. p. 411. ISBN 978-0-538-73545-2. Retrieved 12 November 2018.
  2. ^ Seymour Lipschutz 3000 Solved Problems in Linear Algebra.