Sodium- and chloride-dependent glycine transporter 1, also known as glycine transporter 1, is a protein that in humans is encoded by the SLC6A9gene which is promising therapeutic target for treatment of diabetes and obesity. [5][6][7][8]
Selective inhibitors
Elevation of extracellular synaptic glycine concentration by blockade of GlyT1 has been hypothesized to potentiate NMDA receptor function in vivo and to represent a rational approach for the treatment of schizophrenia and cognitive disorders. Several drug candidates have reached clinical trials.[9]
^Kim KM, Kingsmore SF, Han H, Yang-Feng TL, Godinot N, Seldin MF, et al. (April 1994). "Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes". Molecular Pharmacology. 45 (4): 608–617. doi:10.1016/S0026-895X(25)10145-4. PMID8183239.
^Jones EM, Fernald A, Bell GI, Le Beau MM (Nov 1995). "Assignment of SLC6A9 to human chromosome band 1p33 by in situ hybridization". Cytogenetics and Cell Genetics. 71 (3): 211. doi:10.1159/000134110. PMID7587377.
^Harvey RJ, Yee BK (November 2013). "Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain". Nature Reviews. Drug Discovery. 12 (11): 866–885. doi:10.1038/nrd3893. PMID24172334. S2CID28022131.
^Harada K, Nakato K, Yarimizu J, Yamazaki M, Morita M, Takahashi S, et al. (June 2012). "A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole), improves cognition in animal models of cognitive impairment in schizophrenia and Alzheimer's disease". European Journal of Pharmacology. 685 (1–3): 59–69. doi:10.1016/j.ejphar.2012.04.013. PMID22542656.
^Pinard E, Alanine A, Alberati D, Bender M, Borroni E, Bourdeaux P, et al. (June 2010). "Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia". Journal of Medicinal Chemistry. 53 (12): 4603–4614. doi:10.1021/jm100210p. PMID20491477.
Borowsky B, Mezey E, Hoffman BJ (May 1993). "Two glycine transporter variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene". Neuron. 10 (5): 851–863. doi:10.1016/0896-6273(93)90201-2. PMID8494645. S2CID24224402.
Evans J, Herdon H, Cairns W, O'Brien E, Chapman C, Terrett J, et al. (December 1999). "Cloning, functional characterisation and population analysis of a variant form of the human glycine type 2 transporter". FEBS Letters. 463 (3): 301–306. Bibcode:1999FEBSL.463..301E. doi:10.1016/S0014-5793(99)01636-1. PMID10606742. S2CID21445629.
Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, et al. (June 2004). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nature Biotechnology. 22 (6): 707–716. doi:10.1038/nbt971. PMID15146197. S2CID27764390.
Antonov SM, Brovtsyna NB, Mironova EV (2005). "The mechanism of allosteric interaction of cytoplasmic and extracellular Cl- in the glial glycine transporter (hGlyTlb)". Doklady Biological Sciences. 402 (1–6): 163–166. doi:10.1007/s10630-005-0076-z. PMID16121932. S2CID19628294.